Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(10): 7485-7495, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38415599

RESUMEN

Homovanillic acid (HVA) is a major dopamine metabolite, and blood HVA is considered as central nervous system (CNS) dopamine biomarker, which reflects the progression of dopamine-associated CNS diseases and the behavioral response to therapeutic drugs. However, facing blood various active substances interference, particularly structurally similar catecholamines and their metabolites, real-time and accurate monitoring of blood HVA remains a challenge. Herein, a highly selective implantable electrochemical fiber sensor based on a molecularly imprinted polymer is reported to accurately monitor HVA in vivo. The sensor exhibits high selectivity, with a response intensity to HVA 12.6 times greater than that of catecholamines and their metabolites, achieving 97.8% accuracy in vivo. The sensor injected into the rat caudal vein tracked the real-time changes of blood HVA, which paralleled the brain dopamine fluctuations and indicated the behavioral response to dopamine increase. This study provides a universal design strategy for improving the selectivity of implantable electrochemical sensors.


Asunto(s)
Catecolaminas , Dopamina , Ratas , Animales , Ácido Homovanílico/metabolismo , Encéfalo/metabolismo
2.
Adv Mater ; 36(6): e2307726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775103

RESUMEN

Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.


Asunto(s)
Amnios , Líquido Amniótico , Embarazo , Femenino , Humanos
3.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549277

RESUMEN

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Asunto(s)
Hidrogeles , Seda , Animales , Conejos , Seda/química , Hidrogeles/química , Punto Isoeléctrico , Materiales Biocompatibles/química
4.
Adv Mater ; 35(45): e2304141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37478834

RESUMEN

Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.


Asunto(s)
Fuentes de Energía Bioeléctrica , Magnesio , Oxígeno , Electricidad , Prótesis e Implantes
5.
Adv Mater ; 35(32): e2302997, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37159396

RESUMEN

Electrical stimulation is a promising strategy for treating neural diseases. However, current energy suppliers cannot provide effective power for in situ electrical stimulation. Here, an implantable tubular zinc-oxygen battery is reported as the power source for in situ electrical stimulation during the neural repair. The battery exhibited a high volumetric energy density of 231.4 mWh cm-3 based on the entire anode and cathode in vivo. Due to its superior electrochemical properties and biosafety, the battery can be directly wrapped around the nerve to provide in situ electrical stimulation with a minimal size of 0.86 mm3 . The cell and animal experiments demonstrated that the zinc-oxygen battery-based nerve tissue engineering conduit effectively promoted regeneration of the injured long-segment sciatic nerve, proving its promising applications for powering implantable neural electronics in the future.


Asunto(s)
Oxígeno , Zinc , Animales , Zinc/química , Suministros de Energía Eléctrica , Prótesis e Implantes , Estimulación Eléctrica
6.
Sci Rep ; 12(1): 9824, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701496

RESUMEN

Temporal perceptual learning (TPL) refers to improved temporal performance as a result of training with sub-second intervals. Most studies on TPL have focused on empty intervals (i.e. intervals marked by two brief stimuli); however, scholars have suggested that filled intervals (i.e. intervals presented as continuous sensory inputs) might have different underlying mechanisms. Therefore, the current study aimed to test whether empty and filled intervals yield similar TPL performance and whether such learning effects could transfer mutually. To this end, we trained two groups of participants with empty and filled intervals of 200 ms for four days, respectively. We found that the empty-interval group clearly improved their timing performances after training, and such an effect transferred to filled intervals of 200 ms. By contrast, the filled-interval group had neither learning nor transfer effect. Our results further shed light on the distinct mechanisms between empty and filled intervals in time perception while simultaneously replicating the classical findings on TPL involving empty intervals.


Asunto(s)
Aprendizaje Discriminativo , Percepción del Tiempo , Percepción Auditiva , Humanos , Aprendizaje
7.
Adv Mater ; 34(4): e2105120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34713511

RESUMEN

To develop wearable and implantable bioelectronics accommodating the dynamic and uneven biological tissues and reducing undesired immune responses, it is critical to adopt batteries with matched mechanical properties with tissues as power sources. However, the batteries available cannot reach the softness of tissues due to the high Young's moduli of components (e.g., metals, carbon materials, conductive polymers, or composite materials). The fabrication of tissue-like soft batteries thus remains a challenge. Here, the first ultrasoft batteries totally based on hydrogels are reported. The ultrasoft batteries exhibit Young's moduli of 80 kPa, perfectly matching skin and organs (e.g., heart). The high specific capacities of 82 mAh g-1 in all-hydrogel lithium-ion batteries and 370 mAh g-1 in all-hydrogel zinc-ion batteries at a current density of 0.5 A g-1 are achieved. Both high stability and biocompatibility of the all-hydrogel batteries have been demonstrated upon the applications of wearable and implantable. This work illuminates a pathway for designing power sources for wearable and implantable electronics with matched mechanical properties.

8.
Angew Chem Int Ed Engl ; 60(28): 15317-15322, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33928737

RESUMEN

Mg-air batteries are explored as the next-generation power systems for wearable and implantable electronics as they could work stably in neutral electrolytes and are also biocompatible. However, high corrosion rate and low utilization of Mg anode largely impair the performance of Mg-air battery with low discharge voltage, poor specific capacity and low energy density. Here, to the best of our knowledge, we first report a dual-layer gel electrolyte to simultaneously solve the above two problems by preventing the corrosion of Mg anode and the production of dense passive layer, respectively. The resulting Mg-air batteries produced an average specific capacity of 2190 mAh g-1 based on the total Mg anode (99.3 % utilization rate of Mg anode) and energy density of 2282 Wh kg-1 based on the total anode and air electrode, both of which are the highest among the reported Mg-air batteries. Besides, our Mg-air batteries could be made into a fiber shape, and they were flexible to work stably under various deformations such as bending and twisting.

9.
Small ; 17(48): e2005015, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33624928

RESUMEN

Stretchable energy storage devices are essential for developing stretchable electronics and have thus attracted extensive attention in a variety of fields including wearable devices and bioelectronics. Carbon materials, e.g., carbon nanotube and graphene, are widely investigated as electrode materials for energy storage devices due to their large specific surface areas and combined remarkable electrical and electrochemical properties. They can also be effectively composited with many other functional materials or designed into different microstructures for fabricating stretchable energy storage devices. This review summarizes recent advances toward the development of carbon-material-based stretchable energy storage devices. An overview of common carbon materials' fundamental properties and general strategies to enable the stretchability of carbon-material-based electrodes are presented. The performances of the as-fabricated stretchable energy storage devices including supercapacitors, lithium-ion batteries, metal-air batteries, and other batteries are then carefully discussed. Challenges and perspectives in this emerging field are finally highlighted for future studies.


Asunto(s)
Suministros de Energía Eléctrica , Dispositivos Electrónicos Vestibles , Electrodos , Electrónica , Litio
10.
J Vis ; 20(6): 15, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32574359

RESUMEN

When a visual stimulus flickers periodically and rhythmically, the perceived duration tends to exceed its physical duration in the peri-second range. Although flicker-induced time dilation is a robust time illusion, its underlying neural mechanisms remain inconclusive. The neural entrainment account proposes that neural entrainment of the exogenous visual stimulus, marked by steady-state visual evoked potentials (SSVEPs) over the visual cortex, is the cause of time dilation. By contrast, the saliency account argues that the conscious perception of flicker changes is indispensable. In the current study, we examined these two accounts separately. The first two experiments manipulated the level of saliency around the critical fusion threshold (CFF) in a duration discrimination task to probe the effect of change saliency. The amount of dilation correlated with the level of change saliency. The next two experiments investigated whether neural entrainment alone could also induce perceived dilation. To preclude change saliency, we utilized a combination of two high-frequency flickers above the CFF, whereas their beat frequency still theoretically aroused neural entrainment at a low frequency. Results revealed a moderate time dilation induced by combinative high-frequency flickers. Although behavioral results suggested neural entrainment engagement, electroencephalography showed neither larger power nor inter-trial coherence (ITC) at the beat. In summary, change saliency was the most critical factor determining the perception and strength of time dilation, whereas neural entrainment had a moderate influence. These results highlight the influence of higher-level visual processing on time perception.


Asunto(s)
Fusión de Flicker/fisiología , Percepción del Tiempo/fisiología , Percepción Visual/fisiología , Adulto , Estado de Conciencia , Dilatación , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Adulto Joven
11.
ACS Appl Mater Interfaces ; 11(17): 16223-16232, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969110

RESUMEN

A high-performance, flexible, and transparent heater based on a hybrid of dry-spun carbon nanotubes (CNT), which is pulled out directly from a super vertically aligned CNT forest, and graphene is fabricated. The electrical, optical, and electromechanical properties of two different kinds of hybrid devices, graphene above or below the CNT film, and simple CNT film heating devices that are made of one or two layers of CNTs, are studied. The results prove that the hybrid structured film heaters are superior to the simple CNT film heaters. The simple single-layer CNT film and double-layer CNT film heaters attain maximum temperatures of 48 and 64 °C with transmittances of 73 and 64% at a wavelength of 550 nm, respectively, whereas the single-layer CNT sheet/graphene/PET and graphene/single-layer CNT sheet/PET hybrid heaters attain maximum temperatures of 81 and 85 °C with transmittances of 68 and 71%, respectively. The 10 000 bending cycle test suggests that the graphene/single-layer CNT sheet/PET heater has good mechanical and thermal stability. Further, defrost test and portable heating with a 9 V battery prove the possibility of using the hybrid heater for vehicle defrosting, portable heating, and wearable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...